
CSCI 43200 Project: E2EE Messaging App 1

E2EE Messaging App

Evin Bour-Gilson, Nicholas Baird, Pratham Vadhulas, Jay Shukla, Avinash Pandey

Indiana University Purdue University Indianapolis

CSCI 43200

Professor Scott Orr

April 19, 2024

CSCI 43200 Project: E2EE Messaging App 2

Table Of Contents

INTRODUCTION... 3

PROBLEM/BACKGROUND... 4

CHALLENGES... 5

IMPLEMENTATION DETAILS... 7

TESTING/ RESULTS..9

SUMMARY... 11

REFERENCES.. 13

Project Source Code:

https://github.com/NickBaird/CSCI43200-Project/

Video Demonstration of Project:

https://drive.google.com/file/d/1JccJMUCiDzNrKSQJL-lv7r1LEyx-qqT3/view?usp=sharing

https://github.com/NickBaird/CSCI43200-Project/
https://drive.google.com/file/d/1JccJMUCiDzNrKSQJL-lv7r1LEyx-qqT3/view?usp=sharing

CSCI 43200 Project: E2EE Messaging App 3

INTRODUCTION

The purpose of this document is to explain the development, implementation, and testing

of an end-to-end encrypted messaging application. By implementing a variety of security

protocols and industry leading standards we were able to create a robust and secure application.

Through this application, we hope users will have confidence that their messages are protected

from any outside threats.

To manage authentication and conversation storage we leverage Google Firebase

real-time database [1]. The back-end is built using JavaScript and the cryptographic library

libsodium which provides an advanced elliptic-curve Diffie-Hellman key exchange mechanism

[2, 3].The front-end is developed with Vue.js and stylized by Tailwind CSS for a better user

experience [4, 5]. The functionalities allow users to communicate in real time securely with

additional security features that prevent unauthorized message sending from unrecognized

devices.

We begin the report by introducing the history of messaging applications and the

importance of end-to-end encryption. Then we discuss the technical implementation of the app,

talking about the various technologies used and why they were used. After this we include the

various ways we tested our application for security and privacy. Finally, we mention the

challenges we faced during the development process and how we overcame them.

This project showcases our commitment to creating a user friendly and secure platform

with various technologies we’ll talk about later in the report. We have also included a video

demonstration of the project linked above which showcases the user experience.

CSCI 43200 Project: E2EE Messaging App 4

PROBLEM/BACKGROUND

In an increasingly digital world, concerns such as privacy and security have taken a

backseat. Companies stand to benefit from information shared in personal conversations by

selling data to advertisers and other third parties. Furthermore, bad actors with access to

messaging information through interception could glean valuable information such as financial

and health related records. Even government agencies use online communication to conduct

mass surveillance, infringing on the personal rights of their citizens [6].

Given these threats, safeguarding communications from unauthorized access has never

been more crucial. End-to-end encryption has emerged as a key solution, ensuring only intended

recipients can access messages. The need for this technology has given rise to multiple

messengers such as Signal, WhatsApp, and Telegram. Through our application, we intend to

employ the same robust, industry leading security technologies to give users confidence that their

conversations are not compromised or misused at any point during transmission [7].

Although end-to-end encryption might be the gold standard for messaging applications

today, these standards have not always been in place. Before Signal launched in 2014, systems

such as short message service (SMS), instant messaging, and mobile messaging apps such

WhatsApp offered cheap and reliable communication channels, but they lacked robust security

protocols. Even since the widespread adoption of end-to-end encryption, technology has

advanced to protect users. Older algorithms such as DES (data encryption standard) have been

replaced by AES (Advanced Encryption Standard) and elliptic curve cryptography (ECC) [8].

Our application aims to use the most up to date encryption algorithms alongside Diffie-Hellman

key exchange to give users the utmost confidence in their privacy.

CSCI 43200 Project: E2EE Messaging App 5

CHALLENGES

Through this project we wanted to create an application which combined rigorous

security protocols with a seamless user experience. While there are many modern tools available

to help with this endeavor, we still faced numerous roadblocks in development. Some of these

challenges along with our solutions are highlighted below.

End to Encryption Related:

● Managing key lifecycle and ensuring keys are securely exchanged without exposing them

to potential interception was complex.

● Ensuring that message encryption and decryption processes are efficient enough to handle

real-time messaging without delays.

Database and Communication Related:

● Handling real-time data synchronization across devices proved challenging, especially in

scenarios with poor network conditions.

● Ensuring data integrity and consistency when simultaneous database writes occur was a

significant hurdle.

JavaScript:

● Debugging asynchronous JavaScript code, especially with multiple nested callbacks and

external library integrations, was challenging.

Vue.js:

● Using the js.js file as a source of all main functions and variables was difficult to work

with. We had to modify the common Vue.js setup to accommodate this unique and rare

CSCI 43200 Project: E2EE Messaging App 6

setup of using functions that were within a vanilla JavaScript file rather than within a Vue

file.

● When importing variables within JavaScript, they are imported as constants, so they do

not change after importing even if they are changed in the file from which they were

imported from. This caused issues with asynchronous functions and global variables

when importing them to a Vue file. The variables would import as null due to the fact that

the asynchronous functions that the variables depended on would import the data

immediately instead of waiting the time needed to pull the data from the database. We

solved/worked around this issue by utilizing promises and creating separate functions that

first pull the data, and then display the data.

Styling:

● Regular CSS offers a lot of flexibility, but in order to maintain a steady design throughout

the app, it is challenging. Huge companies take years to develop a good consistent

design. We found a solution to this problem, and that is TailwindCSS, a utility-first CSS

framework.

CSCI 43200 Project: E2EE Messaging App 7

IMPLEMENTATION DETAILS

When implementing our end-to-end encrypted messaging web application, many

different libraries and services were used. To begin, users would use Firebase authentication

either to sign up an account or login to an existing account. Here, when the user signs up, two

pairs of public and private keys are generated using libsodium [3]. One pair is used for

encryption and decryption (X25519) and the other pair is used for signing and verifying

messages (Ed25519). The user’s public keys will be sent to the database, while their private keys

will be saved locally to their browser using IndexedDB [9].

With the keys established and authentication granted, then the user is then able to use the

Firebase Real-time Database. Of course, there are only certain parts where such a user can read

and/or write data to ensure security. Then, the user can invite another user to have a

conversation, which is 1-to-1 messaging. If the user accepts the invite, both users will be able to

use each other’s public keys to exchange messages or files to one another. Our web application

also supports group chats; therefore, a user is able to create a group chat, with some encrypted

name, and then invite people to it. Like conversations, a user can accept the invitation, and will

receive the name of the group chat and any messages put in the group chat since they have joined

the group, all encrypted. Unlike a conversation, group chats require a message to be sent to

multiple users; therefore, the way we decided to do this follows how Threema, a popular

end-to-end encryption messaging app, does it. Our implementation was to send the message to

each user in the group, using their respective public keys for encryption [5]. This would not be

ideal for files, as files are way larger in size than text and would eat up too much bandwidth. This

is why we upload the file once, encrypt it with some generated key just for that file, then send the

decryption key to each user in the group chat, using the traditional encryption method.

CSCI 43200 Project: E2EE Messaging App 8

When a user leaves a group, or is kicked, they will lose access to the messages that have already

been sent and any further messages sent in the group chat. Since they do not have access

anymore, they would not be able to see the messages they have sent or received when in the

group; however, the messages that were sent to or by the user, still reside in the database.

In our implementation, privacy is of the utmost importance; therefore, the only

information that is visible or can be derived from when looking at the database, as a database

administrator, is the user’s display name, a user's public keys, who the user is messaging either as

a conversation or group chat, and the timestamp of a message being sent. Every other

information, such as the message or file themselves, are fully encrypted and signed.

CSCI 43200 Project: E2EE Messaging App 9

TESTING/ RESULTS

Our goal in this project was two-fold: first to create a robust end-to-end encrypted

messaging system, and second to create a seamless user experience. To ensure we met these

goals, we employed both unit testing and functional testing methods. Through this technique, we

were able to be certain that both the average user and extreme cases were handled appropriately

by the application. Below we have highlighted how we approached testing various functions of

the messenger alongside the results. Further implementation is shown in the attached video.

Authentication:

● Users are able to create accounts with a valid email address and password

● Make sure all edge cases, like an already existing account with the same email address,

are handled

● We made sure that even if someone is able to login with credentials, that the private keys,

which are stored locally on a device, are necessary in order to receive interpretable

information from the database

Real-time Database:

● The real-time database has built-in database rules that require certain conditions to allow

reads and writes to a specific part of the database

● They also support a rules playground tool which allows various testing capabilities for

the database rules [10].

● This tool was used during the development process for implementation/debugging, and it

was also used in this testing process to ensure secure database reads and writes.

Encryption/Decryption:

CSCI 43200 Project: E2EE Messaging App 10

● Tested that encryption and decryption works only with the correct shared keys

● Tested that signing messages and verifying messages work and prevent the possibility of

a man-in-the-middle attack

Local Test:

● We were able to setup two different accounts in two different browsers on the same

machine

● As connecting to Firebase is required, no communication is done locally through the

machine and only through Firebase

● Because of this, this test is practically the same as a non-local test, where two separate

devices, which can also be on different networks, are used

Device-to-Device:

● Have two different people on different machines setup an account

● Both people exchange user IDs and establish communications between each other, either

through a conversation (1-to-1) or a group.

● Are able to send and receive messages and perform the other functions mentioned

previously, with ease

CSCI 43200 Project: E2EE Messaging App 11

SUMMARY

Thus, this documentation talks about the implementation of an end-to-end encrypted

messaging application, which is built to conduct a safe interaction between the users. This

program uses technologies like Firebase Realtime Database, Firebase Authentication,

cryptographic protocols via Libsodium, and security features like Diffie-Hellman key exchange.

During the project, we came across many problems, especially in the development

process. Some problems were maintaining important life cycles, guaranteeing real-time data

integrity, and streamlining asynchronous processes in our framework. All of this was built with

JavaScript and Vue.js. We also incorporated TailwindCSS for the front end part.

In the testing stages we were able to confirm the dependability and security of the

application. The tests were validated when we were only able to decrypt the encrypted messages

by the intended recipients and protected the user's privacy from interceptions.

With the potential to significantly enhance the status of secure communication

technology, this project demonstrates our dedication towards both security and innovation.

Looking ahead, our goal is to further improve our application with the highest levels of security

and privacy.

If we were to continue this project as a group, there are a few features we could add to

enhance the user experience. One really useful feature would be to make it easy to transfer an

account (private key) from one device to another. For example, a user could use their phone to

scan a QR code of an account they already have set up on a desktop. Other useful features would

be to incorporate two-factor authentication and notifications. Luckily, Firebase does support both

of these features in their service, making these features easily compatible with our application. In

our JavaScript file, we created, but were not able to implement and test, functions that would

CSCI 43200 Project: E2EE Messaging App 12

also be beneficial to implement if we had time to continue this project. Some of the functions

that we have created, but did not have time to implement, are: blocking users and group chats,

deleting all messages in a chat with one button, and promoting someone else in a group chat to

admin so that they would be able to invite other users as well. Lastly, another small, but useful,

feature would be the ability to react with an emoji to a sent message.

CSCI 43200 Project: E2EE Messaging App 13

REFERENCES

[1] “Firebase documentation,” Google, https://firebase.google.com/docs (accessed Apr. 19,

2024).

[2] “Quickly validate Firebase Security rules,” Google,

https://firebase.google.com/docs/rules/simulator (accessed Apr. 19, 2024).

[3] “Using IndexedDB,” MDN Web Docs,

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB

(accessed Apr. 19, 2024).

[4] K. Hassel, “What is end-to-end encryption & why does it matter?,” PIA VPN Blog,

https://www.privateinternetaccess.com/blog/what-is-end-to-end-encryption/ (accessed

Apr. 19, 2024).

[5] “Cryptography Whitepaper,” Threema. Apr. 4, 2024

[6] D. K. Gillmor and J. S. Granick, “The vital role of end-to-end encryption: ACLU,”

American Civil Liberties Union,

https://www.aclu.org/news/privacy-technology/the-vital-role-of-end-to-end-encryption

(accessed Apr. 19, 2024).

[7] “Resources,” tailwindcss, https://tailwindcss.com/resources (accessed Apr. 19, 2024).

[8] “Introduction,” Vue.js, https://vuejs.org/guide/introduction.html (accessed Apr. 19, 2024).

[9] “Introduction,” libsodium, https://doc.libsodium.org/ (accessed Apr. 19, 2024).

[10] J. Lake, “Demystifying Diffie-Hellman key exchange and explaining how it works,”

Comparitech,

https://www.comparitech.com/blog/information-security/diffie-hellman-key-exchange/

(accessed Apr. 19, 2024).

